Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116147, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460405

RESUMO

Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.


Assuntos
Arsênio , Microbiota , Camundongos , Humanos , Animais , Arsênio/toxicidade , Camundongos Endogâmicos C57BL , Fígado , Glutationa , Metabolismo dos Lipídeos
2.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347439

RESUMO

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Criança , Humanos , Infecções por Haemophilus/microbiologia , Pulmão/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Células Epiteliais
3.
J Mol Graph Model ; 126: 108623, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716293

RESUMO

Drug resistance to Bruton's Tyrosine Kinase (BTK) inhibitors presents a challenge in treating B-cell malignancies, and the mechanism behind drug resistance remains unclear. In this study, we focused on the BTK L528W mutation and investigated the underlying mechanisms of resistance to ibrutinib (including prototype and its active metabolite from, PCI-45227) using a combination of bioinformatics analysis, and molecular dynamics (MD) simulations. Protein stability of wild type (WT) BTK and L528W mutant was predicted using DUET, PoPMuSiC, and I-Mutant2.0. We performed MD simulations of six systems, apo-WT, metabolite-WT, prototype-WT and their mutants, to analyze the significant conformational and BTK-inhibitor binding affinity changes induced by the L528W mutation. Results show that the L528W mutation reduces the conformational stability of BTK compared to the WT. Principal component analysis (PCA) based free energy landscape (FEL) analysis shows that the L528W mutant ensemble tends to form more conformation clusters and exhibit higher levels of local minima than the WT counterpart. The interaction analysis reveal that the L528W mutation disrupts the strong hydrogen bond between Cys481 and inhibitors and reduces the number of hydrogen bonds between inhibitors and BTK in the L528W mutant complex structures compared to the WT. Porcupine plot analysis in association with cross-correlation analysis show the high-intensity flexible motion exhibited by the P-loop region. MM/GBSA calculations show that the L528W mutation in metabolite-BTK and prototype-BTK complexes increases binding free energy compared to the WT, with a reduction in binding affinity confirmed by per-residue energy decomposition. Specifically, the binding free energy increases from -57.86 kcal/mol to -48.26 kcal/mol for the metabolite-BTK complex and from -62.04 kcal/mol to -50.55 kcal/mol for the prototype-BTK complex. Overall, our study finds that the L528W mutation reduces BTK stability, decreases binding affinity, and leads to drug resistance and potential disease recurrence.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Simulação de Dinâmica Molecular , Tirosina Quinase da Agamaglobulinemia/genética , Mutação , Resistencia a Medicamentos Antineoplásicos/genética
4.
Virus Res ; 285: 197988, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380210

RESUMO

OBJECTIVE: This paper aims to explore the effect of four virus inactivation methods on the rapid detection results of COVID-19 nucleic acid. METHODS: Collected samples of nasopharyngeal swabs from 2 patients diagnosed with COVID-19 at the First People's Hospital of Zhaoqing City, each of sample was divided into 5 groups (groupA∼E): A:Non-inactivated raw sample; B:75 % ethanol inactivation; C:56 ℃ incubation for 30 min inactivation; D:65 ℃ incubation for 10 min inactivation; E:Pre-inactivation using RNA virus special preservation fluid added into the sampling tube to treated the nasopharyngeal swab sample separately, using real-time fluorescent RT-PCR to detect the N gene of COVID-19 and the ORF1ab gene simultaneously. All the groups are diluted in 1:2, 1:4, 1:8 ratios. The objectives are to compare the effect of the varied inactivation method on CT(Cycle Threshold)results in PCR, conduct correlation and Bland-Altman analysis. RESULTS: For the N gene and ORF1ab gene, the CT values of 4 inactivated and Non-inactivated treatment were correlated (P<0.001). The results of the four treatment methods and specimens without inactivated treatment have shown good consistency. CONCLUSION: The treatment of nasopharyngeal swab specimens using mentioned four inactivated methods had no significant effect on the subsequent detection of the new COVID-19 nucleic acid test. Lab test-persons can flexibly adopt pre-inactivation methods to ensure the accuracy of virus nucleic acid test results, meanwhile guarantee the safety of lab test-persons.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inativação de Vírus , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Etanol , Temperatura Alta , Humanos , Nasofaringe/virologia , Proteínas do Nucleocapsídeo/análise , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Poliproteínas , Preservação Biológica , RNA Viral/análise , SARS-CoV-2 , Manejo de Espécimes/métodos , Proteínas Virais/análise , Proteínas Virais/genética
5.
Food Funct ; 10(6): 3198-3208, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31165849

RESUMO

For the first time, a new 16-amino-acid peptide was isolated from Eucheuma, an edible seaweed, and named EZY-1. EZY-1 was used to interfere with bleomycin-induced mice pulmonary fibrosis. The target proteins of EZY-1 were screened by an in vitro pull-down method combined with LC-MS/MS. The results showed that EZY-1 can inhibit the idiopathic pulmonary fibrosis (IPF) induced by bleomycin. The potency and safety of EZY-1 are superior to those of the drug used for clinical treatment, pirfenidone. The results showed that EZY-1 suppresses the TGF-ß/Smad, PI3K-Akt-mTOR, Rac1-PAK2-cAb1 and MAPK signal transduction pathways. Proteins such as ERK, Akt, PDGF receptor ß, vitronectin, raptor and SHP2 exhibited binding to EZY-1 in an in vitro pull-down assay combined with LC-MS/MS analysis. EZY-1 was confirmed to be an effective component of Eucheuma in the inhibition of IPF. The signalling pathways and target proteins of EZY-1 were preliminarily predicted. This study lays the foundation for the development of new drugs from Eucheuma for the treatment of IPF.


Assuntos
Bleomicina/efeitos adversos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Peptídeos/administração & dosagem , Rodófitas/química , Animais , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA